Merged Documentation for _get_similar_categories
and parse_categories
¶
Method: _get_similar_categories
¶
Functionality¶
This function retrieves a list of similar category objects based on the vectorized search query. It first processes the query using a query retriever, then embeds the query and searches for similar objects in the vector database.
Parameters¶
search_query (Any)
: The input query to search for similar categories. It is processed to generate a vector representation.
Returns¶
- List[SearchResults]: A list of similar category objects. Returns an empty list if no matches are found.
Usage¶
- Purpose: Find categories that match a given search query via vector embedding and similarity search.
Example¶
results = _get_similar_categories("example query")
if results:
for category in results:
process(category)
else:
print("No similar categories found.")
Method: parse_categories
¶
Functionality¶
This endpoint handles POST requests to retrieve similar categories based on a provided search query. It vectorizes the query, performs a similarity search, and returns matching categories.
Parameters¶
body
: A QueryParsingRequest object that contains the search query to be parsed.
Usage¶
- Purpose: To search and return categories relevant to a text query.
Example¶
from embedding_studio.api.api_v1.endpoints.query_parsing import parse_categories
from embedding_studio.api.api_v1.schemas.query_parsing import QueryParsingRequest
req = QueryParsingRequest(search_query="sample query")
response = parse_categories(req)
print(response.categories)